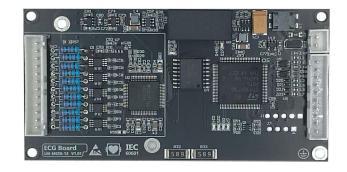
LM-MESB-12 单导联心电采集心电同步门控数据手册(V1.00)

主要特性

- 12 导联
- 内置 DSP ECG 信号处理算法
 - 基线滤波
 - 肌电滤波
 - 工频滤波
 - R波判断
 - 心率计算
 - 抗干扰算法
- PACE(起搏/电刺激)检测
- 同步门控输出
 - R 波门控输出
 - PACE(起搏/电刺激)门控输出
 - 针对 CT 应用可设置门控延迟
 - 针对PFA应用可设置R波识别幅度与周期
 - 针对 PFA 应用可接入放电 MASK 信号增强抗干扰能力
- 供电: 12V/1.0A DC
- TTL UART/RS485 上位机接口
- 性能
 - 电压动态范围: ±300mV
 - 心电数据:12 位、5uV 分辨率
 - 采样率: 125/250/500Hz
 - CMRR≥90dB
 - 输入阻抗≥10MΩ
 - 电路噪声≤15uV
 - 门控延迟≤20ms
- 符合医疗法规
 - IEC60601-1
 - IEC60601-2-27
 - IEC60601-2-25
 - IEC60601-2-51
 - 隔离 2xMOPP

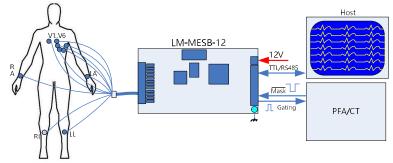
该模块为医疗级心电数据采集分析模块,采用TTL UART/RS485 接口与上位机通讯,接收上位机控制命令,发送心电数据、R 波标识、PACE 标识、心率等分析结果给上位机。

模块带 DSP ECG 信号处理算法,过滤心电噪声(基线滤波、肌电滤波、工频滤波),分析心动周期,分析 R 波形态,输出 R 波门控信号,PACE(起搏器/电刺激)检测,输出 PACE 门控信号。


传给上位机的数据包括完整的心电图数据:心电图波形数据、R 波标识、PACE 标识、心率、导联脱落状态、心率等等。

该模块具有 2xMOPP 应用部分 AP 与其它部分的隔离,导联接口具有 TVS 静电吸收与除颤能量吸收电阻。模块符合 IEC60601 相关法规。

应用场合


- 静态/动态心电图机、心电监护仪核心数据采集 与分析模块。
- 射频消融、PFA 脉冲消融心电同步门控放电控制
- CT 心电同步门控

外观

描述

典型应用框架图

目录

— .	硬件接口	3
= .	模式、预限值、检测通道	5
二. 三.	通讯协议	6
四.	应用开发参考(心电图机/PFA 门控/CT 门控)	11
五.	购买型号说明	13
六.	机械尺寸	
附表 A:	R 波分析测试-正常窦性心律	14
	R 波分析测试-ST 异常	
附表 ():	R 波分析测试-小孩心律	14
附表 D:	R 波分析测试-PACE 带动(心电板 PACE 检测关闭)	15
附表 E:	PACE 检测	15
	R 波分析测试-异常心律(SV)	
附表 G:	R 波分析测试-异常心律(PREM)	15
	R 波分析测试-异常心律(VENT)	
附表 H:	R 波分析测试-异常心律(COND)	16

一. 硬件接口

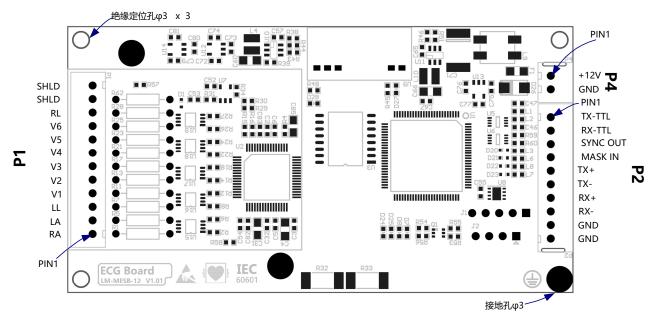


图 1 硬件接口示意图

P1 连接器 (导联线接口):

1	RA	右手
2	LA	左手
3	LL	左脚
4	V1	V1
5	V2	V2
6	V3	V3
7	V4	V4
8	V5	V5
9	V6	V6
10	RL	右腿驱动
11	SHLD	屏蔽驱动引脚,接内部电缆屏蔽层或外部导联线屏蔽层
12	SHLD	屏蔽驱动引脚,接内部电缆屏蔽层或外部导联线屏蔽层

P2 连接器(上位机接口)

	江 汉田《王世》(1) [4]					
1	TX-TTL	5V TTL 串口 TX				
2	RX-TTL	5V TTL 串口 RX				
3	SYNC OUT	5V TTL 门控输出				
4	MASK IN	5V TTL MASK 输入,不用时可不接,低电平时忽略 R 波侦测				
5	TX+	RS485 发送 TX+				
6	TX-	RS485 发送 TX-				
7	RX+	RS485 接收 RX+				
8	RX-	RS485 接收 RX-				
9	GND	信号地				
10	GND	信号地				

P4 连接器(电源接口)

1	12V	直流电源正输入,9~16V,1A
---	-----	------------------

2 GND 电源地

1. 导联线端接线

P1 端为导联线端接线口,接线安装如下图所示:

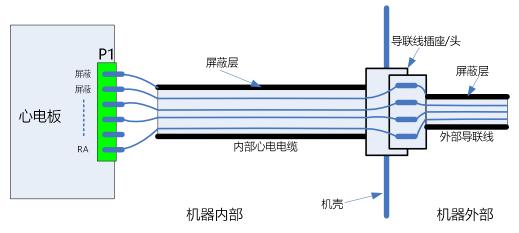


图 2 导联线接口示意图

机器内部心电电缆将信号从心电板连接到机器机壳上的导联线插座,外部导联线将信号从导联线插头连接到人体。为了降低外界环境或机器内部的电磁环境对心电信号的干扰,外部导联线和内部心电电缆都需要采用屏蔽线,屏蔽层分别接到心电板上的屏蔽引脚。电缆和导联线需要将所有导联引出到人体。

2. 电源

P4 连接器 1 脚为正电源, 2 脚为地, 电压范围为 9~16V, 电流需要支持到 1A。

3. 上位机端接线

上位机接口为 P2 连接器的 TTL 串口或者 RS485 串口, 串口通讯协议参看后面章节。

4. 同步门控输出

同步门控输出为 TTL 电平,当检测到 R 波或 PACE (起搏器/电刺激) 信号时输出正脉冲,上升沿有效。 真实 R 波事件或 PACE 事件到门控输出的上升沿因为算法的缘故存在一定的延迟,算法的的固有延迟 小于 20ms,测量图如下:

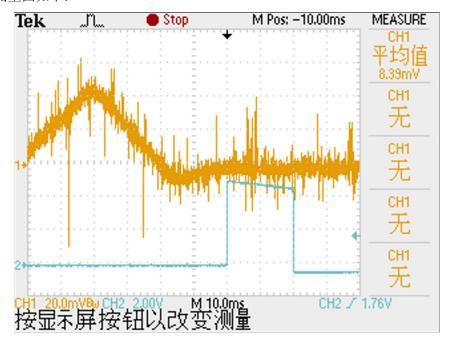


图 3 门控延迟测量图 jiashengwen

除了固有延迟,还可以通过串口设置附加延时。

总延时=固有延时+附件延时

5. 接地孔

接地孔通过 2 个 6.8M 电阻与应用部分连接,为了可以释放静电测试时应用部分累积的静电,可以将接地焊盘连接到大地。此功能可选。

二. 模式、预限值、检测通道

1. 工作模式

心电板有 2 中工作模式,停止模式,启动模式。心电板开机后默认为停止模式,收到启动采集命令之后进入启动模式,启动模式下收到停止命令进入停止模式。

2. 模拟输入信号形式(电极片输入/前置设备输入)

心电板可以接收 2 种形式的心电模拟信号,常规的形式是采用体表贴电极片的方式采集心电信号,此时需要通过命令将外部预增益设置成 1 (默认情况下已为 1,可以忽略此步骤);第二种模式是前置设备输入,有的手术或治疗系统中会联合使用其它医疗器械,比如多导仪、监护仪,这类设备本身具有心电检测的功能,设备上带有已经处理过的心电信号输出口,心电板可以直接接入这类信号。前置设备的心电信号一般经过放大了,为了保证算法的准确性,需要考虑这个预放大倍数,这时需要通过命令进行外部预增益设置。另外,有的前置设备为差分输出,没有参考地,硬件接口需要采用如下方式连接:

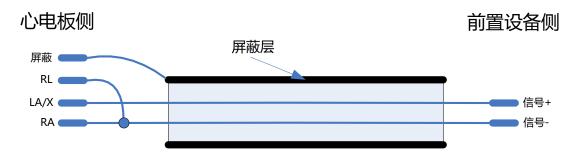


图 4 前置设备模拟输入接线图 jiashengwen

如图所示,RL 需要与RA 连接,保证输入信号满足心电板的电压范围。同时RA 与信号-连接,LA/X 与信号+连接。

3. 门控模式(R 波门控、PACE 门控)

有 R 波门控和 PACE 门控两种模式,默认情况为 R 波门控,即当检测到 R 波时输出门控脉冲。也可以通过命令将心电板配置成 PACE 门控模式,需要两条命令: 1-启动 PACE 检测、2-设置 PACE 门控延迟为 ≥ 0 的值(请参考后面章节)。门控模式示意图如下图所示:

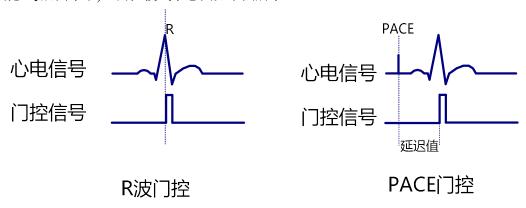


图 5 门控模式

起搏器信号(PACE)是用来触发心脏 QRS 的,一般 PACE 与 R 波有相对固定的延迟,在 PACE 门控情况

下,为了能让触发信号与 R 波位置对应起来,可以设置从 PACE 信号到输出门控信号的延迟值。

4. 预限值

为了方便算法排除干扰情况,需要预先设置一些限值条件。心电板提供了 R 波幅值和心率两种限值,预限值设置命令请参考后面章节。

5. MASK 信号

PFA 应用场景下,为了避免放电对 R 波检测的干扰,板子提供 MASK 信号,当输入低电平时算法将忽略 R 检测,即便有符合 R 形态的 ECG 信号也不判断成 R 波。

6. 门控附加延时

考虑到 CT 门控应用场景的某些需求,板子提供门控延时可控机制,可以通过寄存器设置附加的延时, 总的延时=附加延时+固有延时。

7. R 波检测通道

可以通过串口设置 R 波检测通道, 请参考通讯协议章节。

8. PACE 检测通道

可以通过串口设置 PACE 检测通道,请参考通讯协议章节。

三. 通讯协议

心电采集板通过串口(RS485 UART/TTL UART)与上位机通讯,串口参数为: 115200,8,n,1,通讯为主从模式,上位机为主,心电板为从,上位机给心电板发送命令,下位机对命令做出响应。

命令格式: CMD HEADER,CMD CODE,PAYLOAD SIZE,PAYLOAD,CHECKSUM

CMD HEADER:1 个字节,包头,0xa5

CMD CODE: 1个字节,命令码

PAYLOAD SIZE: 1 个字节, payload 大小

PAYLOAD: 若干字节,payload

CHECKSUM: 1个字节,前面的字节校验和

响应格式: ACK HEADER,ACK CODE,PAYLOAD SIZE,PAYLOAD,CHECKSUM

ACK HEADER: 1 个字节, 反馈包头, 0x5a

ACK CODE: 1 个字节,等于当前反馈的命令码

PAYLOAD SIZE,PAYLOAD,CHECKSUM: 意义同命令包

除了命令与应答以外,下位机还有主动通知数据包,主要用于主动上传采集数据和分析数据,格式为:

NOTIFY HEADER, MOTIFY CODE, PAYLOAD SIZE, PAYLOAD, CHECKSUM

NOTIFY HEADER: 0xa5

NOTIFY CODE: 1 个字节,通知数据包类型码

PAYLOAD SIZE, PAYLOAD, CHECKSUM: 意义同命令包

目前只支持一种通知包,即心电数据包,NOTIFY _CODE 为 0x01,payload_size 为 15,payload 定义如下:

LOFF(1B)+flag(1B)+beatrate(1B)+ecgdata(8*1.5B)

LOFF:leadoff 标识, 1 表示脱落:

b0~b7:RA,LA,LL,V1,V2,V3,V4,V5

flag:

b0:R flag,1 表示当前时间点为 R 波位置

b1:pace flag,1 表示当前位置为 PACE

b2:lock flag, 1表示 R波检测已锁定心动周期节奏

b3:autotrig flag,1 表示自动门控模式下,当前点为门控输出上升沿点

b4:leadoff RL, 1 表示 RL 脱落, 暂时未用

b5:leadoff V6, 1表示 V6 脱落

b6:rsv,未用

b7:心率数据的最高位

heartrate:心率的低 8 位,结合 flag 的 b7 位一共 9 位无符号整数表示心率 $0\sim511$ ecgdata:8 通道心电波形数据,每通道占 1.5 字节(12 位),每 2 通道占用 3 字节:

Byte1,Byte2,Byte3:

Byte1 为通道 1 的低 8 位

Byte2的低4位为通道1的高4位

Byte2的高4位为通道2的低4位

Byte3 为通道 2 的高 8 位

每个通道 12 位, 范围 0~4095, 减去 2048, 范围-2048~2047, 1lsb 为 5uV, 整个电压范围为:

 $-10.24 mV \sim 10.24 mV$

8个通道分别为: I,II,V1~V6

其它导联可以通过计算获取:

III=I-II

中心电位 C: (I+II+III) /3

avR=I-C; avL=II-C; avF=III-C

命令列表:

1. 启动采集

	命令码	payload	payload	说明
	响应码	size		
命令	0x01	2	unsigned short 类型,采样率,	心电板接收到此命令之后将进入采集模式。采
			取值 125/250/500	集模式下心电板进行心电信号 ADC 转换,信
				号滤波,心电分析,门控输出等工作。下位机
				将采集分析完的数据通过主动通知数据包发
				送给上位机
应答	0x01	0	无	

2. 停止采集

	命令码 响应码	payload size	payload	说明
命令	0x02	0	无	心电板接收到此命令之后将进入停止模式。
应答	0x02	0	无	

3. 滤波器开关设置

	命令码	payload	payload	说明
	响应码	size		
命令	0x03	1	unsigned char,开关设置位,	停止模式和启动模式都可以通过此命令进行
			1起开,0关闭	设置
			b0:基线滤波	
			b1:肌电滤波	
			b2:50Hz 滤波	
			b3:60Hz 滤波	
			b4:PACE 检测	
应答	0x03	0	无	

4. 外部预增益(多导仪增益)设置

	命令码	payload	payload	说明
	响应码	size		
命令	0x04	2	unsigned short, 预增益放大 倍数	该命令只能在停止模式进行设置。
应答	0x04	0	无	

5. PACE 门控延迟设置

	命令码	payload	payload	说明
	响应码	size		
命令	0x05	2	unsigned short, PACE 信号到 输出门控的附加延迟,单位 ms, -1 标识不使用 PACE 门 控输出	该命令只能在停止模式进行设置。
应答	0x05	0	无	

6. 肌电滤波(低通滤波)截止频率

	命令码	payload	payload	说明
	响应码	size		
命令	0x06	2	unsigned short,截止频率,	该命令只能在启动模式进行设置。
			单位 1Hz,可选值为:	
			30Hz、50Hz、75Hz、100Hz、	
			150Hz、200Hz	
应答	0x06	0	无	

7. 基线滤波(高通滤波)截止频率

	命令码	payload	payload	说明
	响应码	size		
命令	0x07	2	unsigned short,截止频率,	该命令只能在启动模式进行设置。
			单位 0.01Hz,例如:	
			1 对应 0.01Hz	
			100 对应 1Hz	
			可选频率: 0.05Hz,	
			0.1Hz,0.5Hz,1.0Hz,5.0Hz	
应答	0x07	0	无	

8. R波跟踪算法复位

	命令码	payload	payload	说明
	响应码	size		
命令	0x08	0	无	该命令只能在启动模式发送。心电板收到此命令之后将复位内部 R 波判断状态机,利用此命令可以手动纠正算法错误状态。
应答	0x08	0	无	

9. 设置 R 波算法幅值预限值范围

	命令码	payload	payload	说明
	响应码	size		
命令	0x09	4	unsigned short*2,第一个值	该命令只能在启动模式进行设置。因为滤波
			为最小值,第二个值为最大	器、判断点等原因该值范围与实际之间存在一
			值,单位为 0.01mV	定误差。此预值范围主要用于给 R 波判断逻辑

				提供限值条件以过滤条件之外的干扰因素。 注: 算法有默认预值
应答	0x09	0	无	

10. 设置 R 波算法心率预限值范围

	命令码	payload	payload	说明
	响应码	size		
命令	0x0a	4	unsigned short*2,第一个值	该命令只能在启动模式进行设置。此预值范围
			为最小值,第二个值为最大	主要用于给 R 波判断逻辑提供限值条件以过
			值,单位为 1bpm	滤条件之外的干扰因素。
				注: 算法有默认预值
应答	0x0a	0	无	

11. 自动模拟门控输出

	命令码	payload	payload	说明
	响应码	size		
命令	0x0b	1	1- 启动自动模拟门控输出	自动模拟门控开启时,门控输出端将会自动以
			0- 关闭自动模拟门控输出	1 秒为周期输出模拟的 R 波门控。此时算法不
				再判断实际波形,只己固有周期1秒发放门控
				信号。
应答	0x0b	1	1- 已开启	
			0- 已关闭	

12. 设置门控输出参数

	命令码	payload	payload	说明
	响应码	size		
命令	0x0c	4	Delay:2B,毫秒,门控附加	附加延迟加上门控算法延迟为 R 波导门控输
			延迟	出的真实延迟
			PulseWidth: 2B,毫秒,门控	
			信号的脉冲宽度	
应答	0x0c	0		

13. 设置 R 波检测通道

	命令码	payload	payload	说明
	响应码	size		
命令	0x0d	1	Index:1B, 算法进行 R 检测 使用的信号通道号, 从 0 开 始:I,II,V1,V2,V3,V4,V5,V6	
应答	0x0d	0	7H12,12, 11, 12, 10, 11, 10, 10	

14. 设置 PACE(起搏/电刺激)检测通道

	命令码	payload	payload	说明
	响应码	size		
命令	0x0e	1	Index:1B, 算法进行PACE 检测使用的信号通道号,从 0 开	
			始:I,II,V1,V2,V3,V4,V5,V6	
应答	0x0e	0		

15. 设置 PACE(起搏/电刺激)检测的范围(保留未用)

	命令码	payload	payload	说明
--	-----	---------	---------	----

上海琅铭电子科技有限公司

	响应码	size		
命令	0x0f	2	(保留未用)	(保留未用)
应答	0x0f	0	(保留未用)	(保留未用)

16. 启动带呼吸检测功能的心电采集(仅适用带呼吸功能的产品)

	命令码	payload	payload	说明
	响应码	size		
命令	0x10	1	unsigned short 类型,采样率,	心电板接收到此命令之后将进入采集模式。采
			取值 125/250/500/1000	集模式下心电板进行心电信号 ADC 转换,信
				号滤波,心电分析,门控输出等工作。下位机
				将采集分析完的数据通过主动通知数据包发
				送给上位机
				呼吸检测默认参数为:使能呼吸、0°相位延
				迟、64KHz信号源频率
应答	0x10	0	无	

17. 设置呼吸检测参数(仅适用带呼吸功能的产品)

	命令码	payload	payload	说明
	响应码	size		
命令	0x11	3	Bytel: 呼吸使能, 0-禁用,1-	
			使能	
			Byte2: 相位延迟	
			0x00-0°	
			0x01-11.25°	
			0x02-22.5°	
			0x03-33.75°	
			0x04-45°	
			0x05-56.25°	
			0x06-67.5°	
			0x07-78.75°	
			0x08-90°	
			0x09-101.25°	
			0x0a-112.5°	
			0x0b-123.75°	
			0x0c-135°	
			0x0d-146.25°	
			0x0e-157.5°	
			0x0f-168.75°	
			Byte3: 信号源频率,	
			0-32KHz,1-64KHz	
应答	0x11	0	无	

18. 读取固件版本

10. 1	· KWATIKI			
	命令码	payload	payload	说明
	响应码	size		
命令	0xfe	0	无	停止模式和启动模式都可以读取版本号
应答	0xfe	n	固件版本字符串	版本字符串组成形式: a.b.c.d。
				a 为最大版本段,d 为最小版本段

四. 应用开发参考(心电图机/PFA 门控/CT 门控)

1. 模式流程示例 心电板初始化、启动、设置等工作过程可以参考以下流程:

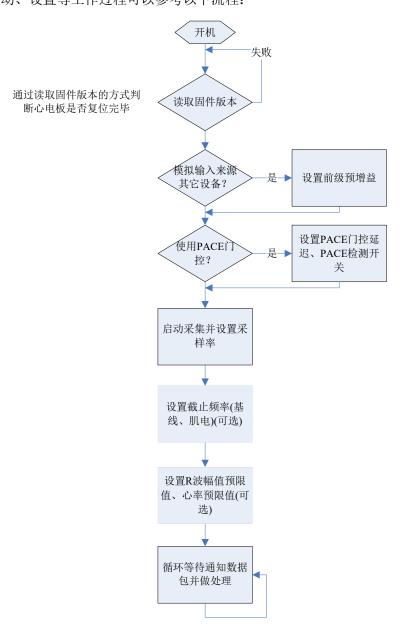


图 6 上位机参考流程

2. 脉冲消融 PFA 心电同步应用

a) 不应期与放电窗口余量

为了保证消融放电不对心脏活动造成影响,PFA需要在心电的相对不应期内放电,如下图所示:

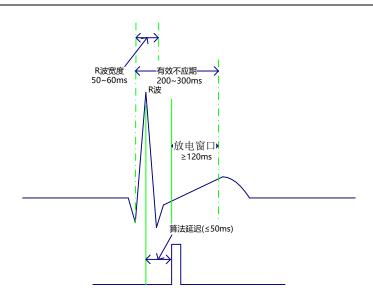


图 7 不应期与放电窗口

有效不应期为 200~300ms, 门控脉冲算法延迟≤50ms, R 波宽度 50~60ms, 放电窗口算下来最小有 120ms 余量。

b) R 波变异情况

心电板会针对各种特殊形状的 R 波进行分析判断,力图准确给出 R 波位置,典型的异常 R 波情况下 R 波标识位置如下图所示:

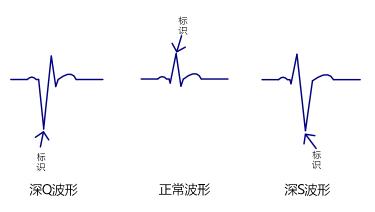


图 8 不应期与放电窗口

各种情形下的放电窗口如下表所示:

波形	放电窗口
深Q波形	≥150ms
正常波形	≥120ms
深S波形	≥90ms

c) 干扰、噪声、波形监测与算法复位

心电板的算法已经考虑到了各种干扰、噪声、异常心律对 R 波分析准确性的影响,但是仍然不能排除 100%的准确无误的判断 (R 波标识测试详见后面章节),例如固定的高耸 P 波、如果幅值成倍的超过 R 波,有可能会被误认为 R 波;临时性的有节奏的肌肉抖动造成的假 R 波有可能会使算法阈值发生偏差,虽然算法有重新适应的功能,但某些情况仍然难重新复位。所以,建议上位机软件需要实时显示心电图波形,并将分析的 R 波标识在图中标示出来,人工来监测异常情况,另外需在软件界面上做算法复位按钮,一旦发现无法自我调整的算法错误可以通过上位机发送算法复位命令给心电板重新跟踪心动周期。

d) 使用预限值排除干扰情况

心电板可以设置两个预限值: R 波幅值、心率范围。设备厂家可以根据适用范围来设定这 2 个预限值, R 波幅值常规取值 0.05mV~10mV; 心率常规取值 40~250bpm。利用这两个预限值可以加强算法的抗干扰

能力,让算法自动排除掉不在预值范围内的分析结果。

a) 适用法规

作为脉冲消融设备,技术要求可以不做心电图法规的要求,只需将设备适用的心率范围写进技术要求 即可,可以免去心电图设备的检测项目。

3. 心电图机应用

该心电板已经提供了静态/动态心电图机、心电监护仪所需要的所有数据、法规要求的性能与安规要求:

指标名	数值	指标名	数值
静态噪声	≤15uV	动态范围	$\pm 300 \text{mV}$
CMRR	≥95dB	时间常数	≥3.2s
输入阻抗	≥10M Ω		
频率范围	0.05~100Hz		

4. CT 门控应用

该心电板提供心电门控、门控延迟可设置等功能、上传的心电数据中带 R 波标识等功能,满足 CT 门控的相关需求。

五. 购买型号说明

厂商型号: LM-MESB-12

六. 机械尺寸

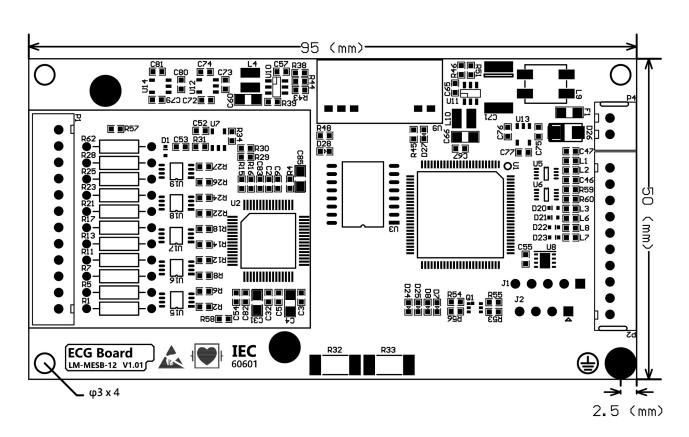


图 9 正面尺寸图 (俯视图)

附表 A: R 波分析测试-正常窦性心律

心率	R波幅值	结果(full-完全标识)
80bpm	1mv	full
30bpm	1mv	full
260bpm	1mv	full
80bpm	0.05mV	full
30bpm	0.05mV	full
260bpm	0.05mV	full
80bpm	5.5mV	full
30bpm	5.5mV	full
260bpm	5.5mV	full

附表 B: R波分析测试-ST 异常

心率	R 波幅值	ST 幅值	结果(full-完全标识/loss-完全丢失)
30bpm	1mv	-0.8mv	full
260bpm	1mv	-0.8mv	full
30bpm	1mv	0.8mv	full
260bpm	1mv	0.8mv	full
30bpm	0.05mV	-0.8mv	full
260bpm	0.05mV	-0.8mv	full
30bpm	0.05mV	0.8mv	loss(R 波增强到 0.1mV 恢复 full)
260bpm	0.05mV	0.8mv	loss(R 波增强到 0.1mV 恢复 full)
30bpm	5.5mV	-0.8mv	full
260bpm	5.5mV	-0.8mv	full
30bpm	5.5mV	0.8mv	full
260bpm	5.5mV	0.8mv	full

附表 C: R 波分析测试-小孩心律

心率	R波幅值	结果(full-完全标识/loss-完全丢失)
30bpm	0.05mV	loss(R 波增强到 0.1mV 恢复 full)
260bpm	0.05mV	loss(R 波增强到 0.1mV 恢复 full)
30bpm	5.5mV	full
260bpm	5.5mV	full

附表 D: R波分析测试-PACE 带动 (心电板 PACE 检测关闭)

心率	R 波幅值	PACE 幅值	PACE 宽度	结果(full-完全标识/loss-完全丢失)
80bpm	1mv	10mv	1ms	error(降低 pace 幅值或宽度或开启
				心电板 PACE 检测可恢复 full)
80bpm	1mv	5mv	1ms	error(降低 pace 幅值或宽度或开启
				心电板 PACE 检测可恢复 full)
80bpm	1mv	10mv	2ms	error(降低 pace 幅值或宽度或开启
				心电板 PACE 检测可恢复 full)
80bpm	1mv	5mv	2ms	error(降低 pace 幅值或宽度或开启
				心电板 PACE 检测可恢复 full)
80bpm	1mv	2mv	2ms	full
80bpm	1mv	10mv	0.5ms	full

附表 E: PACE 检测

PACE 幅值	PACE 宽度	结果(full-完全标识/loss-完全丢失)
1mv	0.1ms	full
10mv	2ms	full

附表 F: R 波分析测试-异常心律(SV)

异常心律	结果(full-完全标识/loss-完全丢失)
afib1(c)	full
afib1(f)	full
afib2(c)	full
afib2(f)	full
Atr Flutt	full
Sinus Arr	full
Missed	full
Atr Tach	full
P Atr Tach	full
Nodal	full
SVT	full

附表 G: R波分析测试-异常心律(PREM)

异常心律	结果(full-完全标识/loss-完全丢失)
PAC	full

IEC60601、12 导联、R 波门控输出、心电采集

上海琅铭电子科技有限公司

PNC	full
PVC1-LV	full (除去异常搏动周期)
PVC1-LV Early	full (除去异常搏动周期)
PVC1-LV RonT	full (除去异常搏动周期)
PVC2-RV	full (除去异常搏动周期)
PVC2-RV Early	full (除去异常搏动周期)
PVC2-RV RonT	full (除去异常搏动周期)
Multi PVCs	full (除去异常搏动周期)

附表 G: R波分析测试-异常心律(VENT)

异常心律	结果(full-完全标识/loss-完全丢失)
PVCS 6/Min	full
PVCS 12/Min	full
PVCS 24/Min	full (除去异常搏动周期)
Freq MF	full (除去异常搏动周期)
Bigeminy	full (除去异常搏动周期)
Trigeminy	full (除去异常搏动周期)
Pair PVCs	自动触发重新同步后 full
Run 5 PVCs	自动触发重新同步后 full
Run 11 PVCs	自动触发重新同步后 full
V Tach	full
Vfilb(c)	loss
Vfilb(f)	loss
Asystole	loss

附表 H: R 波分析测试-异常心律(COND)

异常心律	结果(full-完全标识/loss-完全丢失)
1st DEG BLK	full
2nd DEG BLK	full
3rd DEG BLK	loss
R BND L BLK	full
L BNDL BLK	full